Quantum Kolmogorov Complexity Based on Classical Descriptions

نویسنده

  • Paul M. B. Vitányi
چکیده

We develop a theory of the algorithmic information in bits contained in an individual pure quantum state. This extends classical Kolmogorov complexity to the quantum domain retaining classical descriptions. Quantum Kolmogorov complexity coincides with the classical Kolmogorov complexity on the classical domain. Quantum Kolmogorov complexity is upper bounded and can be effectively approximated from above under certain conditions. With high probability a quantum object is incompressible. Upperand lower bounds of the quantum complexity of multiple copies of individual pure quantum states are derived and may shed some light on the no-cloning properties of quantum states. In the quantum situation complexity is not sub-additive. We discuss some relations with “no-cloning” and “approximate cloning” properties. Keywords— Algorithmic information theory, quantum; classical descriptions of quantum states; information theory, quantum; Kolmogorov complexity, quantum; quantum

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Approaches to the Quantitative Definition of Information in an Individual Pure Quantum State

In analogy of classical Kolmogorov complexity we develop a theory of the algorithmic information in bits contained in any one of continuously many pure quantum states: quantum Kolmogorov complexity. Classical Kolmogorov complexity coincides with the new quantum Kolmogorov complexity restricted to the classical domain. Quantum Kolmogorov complexity is upper bounded and can be effectively approxi...

متن کامل

Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem

In classical information theory, entropy rate and algorithmic complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them a...

متن کامل

On the Quantum Kolmogorov Complexity of Classical Strings

We show that classical and quantum Kolmogorov complexity of binary strings agree up to an additive constant. Both complexities are defined as the minimal length of any (classical resp. quantum) computer program that outputs the corresponding string. It follows that quantum complexity is an extension of classical complexity to the domain of quantum states. This is true even if we allow a small p...

متن کامل

Quantum Kolmogorov Complexity and the Quantum Turing Machine

The purpose of this thesis is to give a formal definition of quantum Kolmogorov complexity and rigorous mathematical proofs of its basic properties. Classical Kolmogorov complexity is a well-known and useful measure of randomness for binary strings. In recent years, several different quantum generalizations of Kolmogorov complexity have been proposed. The most natural generalization is due to B...

متن کامل

On the Quantum Complexity of Classical Words

We show that classical and quantum Kolmogorov complexity of binary words agree up to an additive constant. Both complexities are defined as the minimal length of any (classical resp. quantum) computer program that outputs the corresponding word. It follows that quantum complexity is an extension of classical complexity to the domain of quantum states. This is true even if we allow a small proba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2001